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Graph out of bell ringing

Think of permutations as vertices of a graph.

Two vertices are connected by an edge if there is a permitted
transition (according to bell ringers) that transforms one change into
the other. Here what it looks like for 4 bells:
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Hamiltonian cycle

An extent is a path in this graph, visiting each of the vertices exactly
once, and returning to the beginning vertex. Such tours are called
Hamiltonian cycles.

For Plain Bob, this path looks like that:
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Cayley Graph

Let G be a group, and let S be a generating set of elements.

Definition

Let Cay(G , S) be the colored directed graph having G as the set of
vertices, and for any s ∈ S there is an edge going from g to gs, and any
such edge is colored into a unique color cs corresponding to s ∈ S .

Draw Cayley graphs for Z with S1 = {1}, and with S2 = {2, 3}.
Do the same for Z/6 and S = {1}.

How about Z/3× Z/2 with S = {(1, 0), (0, 1)}?
D4 with generators r90 (rotation by 90◦) and sh (vertical reflection)?
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Properties of Cayley graphs

Prove that any Cayley graph is connected (if we ignore the orientation
of edges).

Between any two vertices g , h there is at most one edge.

All vertices have the same degrees.

What do (un-oriented) cycles in Cayley graphs mean?

Any group acts on its Cayley graph, sending a vertex corresponding to
h to the vertex corresponding to gh.
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Group from its Cayley graph

1 Let Γ = Cay(G ,S) be a Cayley graph.
Question (Mr. Drix): how to see group multiplication from it?

2 Double the graph: for each edge add another one going in the
opposite direction. Call the resulting graph Γ̃.

3 Or, equivalently, forget the orientation of edges at all.

4 Let PΓ be the set of paths in Γ̃.

5 Let G̃ be the set of equivalence classes of elements in PΓ starting at
the vertex e, where two paths are called equivalent iff they differ by
(oriented) cycles.
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Group from its Cayley graph

Let G̃ be the set of equivalence classes of paths in Γ̃ starting at the
vertex e, where two paths are called equivalent iff they differ by some
(oriented) cycles.

Let’s define multiplication on G̃ . Take two equivalence classes of
paths, say [a] and [b].

Let a0 ∈ [a] be a path starting at the vertex e ∈ G , and ending at g0.

Pick a path b0 from the class [b] ending at h0.
It’s given by a sequence e, si1 , si1si2 , . . . , si1si2 . . . sir = h0.

We then define [a] ∗ [b] to be the equivalence class of the composite
path, first going along a0, then continuing as g0si1 , g0si1si2 etc. all the
way up to g0h0.

Claim: G̃ with the multiplication ∗ is a group, and is isomorphic to G .
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Group from its Cayley graph

Claim: G̃ with the multiplication ∗ is a group, and is isomorphic to G .

G̃ has identity and inverse obviously but not clearly associative.

Let’s define a map G̃ → G sending equivalence class [a] to the
end-point of it’s representative.

This is well-defined: the end-point doesn’t depend on the choice.

This is obviously a homomorphism, and it’s clearly surjective.

It’s also injective, so we get an isomorphism. Done.
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Free groups

1 Using the method above, see how it reconstructs the groups Z, Z2

and Z/n.

2 Can any graph appear as a Cayley graph of a group?

3 Think about how to construct a group with no relations (say,
generated by two elements).
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Normal subgroups

Definition

Let G be a group, and H be a subgroup. The subgroup H is called normal
if for any g ∈ G we have gHg−1 = H (equality of sets!).

In other words, H is normal if and only if all left cosets are the same
as right cosets, gH = Hg .

If G is abelian, every subgroup is normal.

The subgroup of rotations in the group D4 of symmetries of a square
is normal.

The subgroup An of even permutations is normal in Sn.
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Cosets for normal subgroups

The point is: if H is normal, the set of cosets G/H has a natural group
structure. This group is called the quotient group.

We define aH ∗ bH := abH. Prove that it’s well defined!

Let nZ ⊂ Z be the subgroup {. . . ,−n, 0, n, 2n, . . . }. Prove that
Z/nZ ' Z/n.

Prove that Sn/An ' Z/2.

Prove that G × H/H ' G , where H ⊂ G × H is the subgroup
H = {(e, h) | h ∈ H}.
R/Z is a circle S1.
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Semidirect product

Let G be a group and K be another group, on which G acts by
automorphisms, i.e. isomorphisms to itself.

In other words, for each g ∈ G we have assigned an isomorphism
Ag : K → K , such that Ae = id and Agh = Ag ◦ Ah.
We write gk (or g .k) for Ag (k).

We define G n K to be the set K × G with the operation

(k1, g1) ∗ (k2, g2) = (k1
g1k2, g1 · g2)

Note that K is a normal subgroup in G n K , and G n K/K ' G .

If G acts trivially on K , then G n K ' G × K .

The group D2n of symmetries of the n-gon is Z/2 n Z/n, where the
action of Z/2 on Z/n is by a 7→ −a.
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Semidirect product

Theorem

Let G be a group, and H,K are two subgroups. Suppose that

H ∩ K = {e};
G = KH as a set;

K is a normal subgroup of G .

Then G ' H n K , where the action of H on K is given by conjugation
hk = hkh−1.
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